B TECH
 (SEM-I) THEORY EXAMINATION 2019-20 ENGINEERING MECHANICS

Time: 3 Hours
Total Marks: 100
Note1.AttemaltS ectiohfsequiarymissidgtatheahooselitably.

SECTIOAN

1. Attemquturestiontsicif.

a.	Explain coplanar concurrent forces.
b.	Explain Polygon law of forces.
c.	Explain coulomb's law of friction.
d.	Define types of beam with neat sketch.
e.	State and explain parallel axis theorem.
f.	Differentiate between centroid and centre of gravity.
g.	Where does the position of centre of gravity of cone and hemisphere lie?
h.	What is the difference between stress and strain?
i.	Define coefficient of friction.
j.	Differentiate between shear force and bending moment.

SECTION B

2. Attempt any three of the following:

\qquad Roll No: \square

b.	A simply supported beam of length 5 m carries a uniformly increasing load of 800 N / m at one end to $1600 \mathrm{~N} / \mathrm{m}$ at the other end as shown in figure 2. Calculate the reaction at both the ends. Fig. 2.
c.	Define moment of inertia. State and prove parallel axis theorem.
d.	A particle moves along a staight line and its motion is represented by the equation $\mathrm{s}=16 \mathrm{t}+4 \mathrm{t}^{2}-3 \mathrm{t}^{3}$ where s is in meter and t is in seconds. Determine: (i) Displacement, velocity and acceleration 2 seconds after start (ii) Displacement and acceleration when velocity is zero (iii) Displacement and velocity when acceleration is zero
e.	Calculate the modulus of rigidity and bulk modulus of a cylindrical bar of diameter 30 mm and length 1.5 m if the longitudinal strain in a bar during a tensile stress is four times the lateral strain. Find the change in volume, when the bar is subjected to a hydrostatic pressure of $100 \mathrm{~N} / \mathrm{mm}^{2}$. Take $\mathrm{E}=1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

SECTION C

3. Attempt any one partof the following:

$10 \times 1=10$

a.	A uniform ladderf weight 30 N and length 13 m is placed against a smooth vertical wall with its lover end 10 m from the wall. In this position the ladder is just to slip. Determine t. coefficient of friction between the ladder and the floor and frictional force acting on the ladder at the point of contact between the ladder and floor.
b.	Define friction and its types also describe limiting friction, coefficient of friction and angle of repose.

4. Attempt any one part of the following:
$10 \times 1=10$

Fig. 4

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

\qquad Roll No: \square

5. Attempt any one part of the following:
$10 \times 1=10$
a. \quad Determine the moment of inertia of the L-section as shown in figure 6 about its centroidal axis parallel to the legs. All dimensions are in mm .

Fig. 6

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

\qquad Roll No: \square
b. \quad Locate the coordinate X_{c} and Y_{c} of the center of a 100 mm diameter circular hole cut in a thin plate so that this point will be the centroid of the remaining shaded area as shown in fig. 7.

Fig. 7
6. Attempt any one part of the following:

a.	State and prove work energy principle.

b. A passenger sitting in a train moving at $54 \mathrm{~km} / \mathrm{hr}$ is hit by a stone thrown at right angles to it with a velocity of $18 \mathrm{~km} / \mathrm{hr}$. calculate the velocity and direction with which the stone appears to hit the passenger.
7. Attempt any one pat of the following:
$10 \times 1=10$

a.	$\begin{array}{l}\text { Discuss stress train diagram for ductile and brittle materials in detail with suitable } \\ \text { diagram. }\end{array}$
b.	$\begin{array}{l}\text { List the assumptions made in simple bending theory. Derive the simple bending } \\ \text { equation. }\end{array}$

